266 R.
the Poisson equation (22) becomes
¢-"(¥) =1 ()’ PalTy(n) —Ly(ns) L, (28)

with boundary conditions
$-(0)=—1/Z,
lim ¢_(x) =x(¢/x) .=, (29)
Fraic~]

With 7;(n4) being a known function of x from the solu-
tion of (16), (28) can readily be integrated to give ¢—
and 7- as functions of x, thereby giving the distribu-
tion of particles about an electron from (24) and (26).

Similarly to the derivation of (20), the net charge
about a given electron is

g—=4dary\ f (NZeny_—N\en.. _)x*dx
. 0 .

= —Ne[xp'—¢_J"=Ne, (30)

which is just the negative of the charge on the electron.

¢. Thermodynamic Functions

An expression for the Helmholtz free energy A (v, 7)
of our system will be derived through the artifice of
the Debye charging process, and we accordingly write

A=A+A,, (31)

where #; is the Helmholtz free energy of the un-
charged (ideal) plasma, and 4. is the contribution
which arises during the charging process.

The contribution of the nuclei to the ideal Helm-
holtz energy A; (per atom) is given by the classical
expression

Asp=—kT{1+In [2rmkT):/ o]}, (32)
and the contribution of the electrons (per atom) is®
Ae=ZkT {n,— 313 (n0) /11 (ne) }- (33)

The portion A, of the Helmholtz energy is the clec-
trical work done in charging up the particles at con-
stant temperature and volume, the particle distribu-
tions at each stage in the charging process being the
equilibrium distributions for the corresponding value
of \. Thus the contribution of each nucleus to A, is

Ze N AZ
do= m{mn x)—%]«z(m)

o ]os.

8 See, for example, A. H. Wilson, Thermodynamics and Slalis-
tical Mechanics 2Cumbri(lgc University Press, London, 1957),
Sec. 6.3.
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‘and the contribution of Z clectrons to A, is

4 —Zf _chm[x//_(r, A)—}-—Jd( N

r—0

- [ err-(8)Joo0.

where the quantities NZe/r and —\e/r have been sub-
tracted from .. and ¢, respectively, in order to remove
the self-energies of the particles, and where ¢.(x)
have been expanded in Taylor series about the origin
(see Sec. 3), and the boundary conditions (17) and
(29) employed. (@e=72/mc* is the first Bohr radius of
hydrogen.)

With the Helmholtz free energy culculated in this
manner, the pressure and the internal energy per
atom can then be obtained from the general relations

P= = (OA/(')v) T
E=A4+TS. (36)

Alternatively, the pressure or the energy can be found
from (36) and the other quantity found from the
virial theorem,? which for Coulombic forces, has the
form

P1J= %Ek-l_%Em (37)

where E, and E, are respectively the kinetic and
rotential energles of the system. The validity of the
virial theorem in the case under consideration can be
established as follows:

The energy of the uncharged gas obtained from (32),
(33), and (36) is entlrely Llnetlc, and it can be readily
shown that pw=3§E; by using in the case of A the
relation (9)

vT%, (1,,) = constant, (38

and also the relation” dI;/dn,,=4/y. Thus it is necessary
to consider only the contribution of A, to the pressure
(p.) and the energy (F.). This lust quantity includes
not only potential energy but also a change in the
kinetic energy brought about by the charging process—
the potential energy of the fully charged system being
the result given by (34) and (33) if the particle dis-
tributions are held fixed at their values for A=119;

5= 2 0~ 3 f 209. @)

9 See, for example, Hirschielder, Curtiss, and Bird, M oleculur
Tlleary of Gases and Liquids ( John Wiley & Sons, Inc., New
York, 1954), Sccs. 3.1b and 6.2h.

10 This result can also be obtained by a straightforward evalua-
tion of the Coulomb integrals for A=1,

£y= Z’f(Z‘)P»f"—"IT‘*‘ -‘.-Z/(—c)p_r“dr.

wh(.rc p+and p_ are defined in Lq'« (2) and (21), and the factors
¥ must be included to avoid counting pair interactions twice.




